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Abstract
The plasma response to externally imposed resonant magnetic perturbations (RMPs) is investigated through
quasi-linear MHD modelling in the case where the resonant surfaces are located in the pedestal of an H-mode
plasma. The pedestal is a particular region regarding the question of plasma response to RMPs because of its strong
E × B and electron diamagnetic rotations. It is found that a strong rotational screening takes place in most of the
pedestal. The RMPs may, however, penetrate in a narrow layer at the very edge, where the plasma is cold and
resistive. The possibility that one harmonic of the RMPs may also penetrate if its resonant surface is at a particular
location, close to the top of the pedestal, where the E×B and electron diamagnetic rotations compensate each other,
is discussed. Finally, the RMPs are found to produce some additional transport, even though they do not penetrate.

PACS numbers: 52.30.Ex, 52.35.Vd, 52.55.Fa, 52.55.Tn, 52.65.Kj

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The results of successful experiments on edge localized
modes (ELMs) control by externally imposed resonant
magnetic perturbations (RMPs) have generated an interest in
understanding the MHD response of an H-mode plasma to
external RMPs. In such experiments (for instance at DIII-D
[1, 2] and JET [3, 4]), a set of coils is used in order to produce
radial magnetic perturbations which, according to the vacuum
modelling (where the plasma response is neglected), create
magnetic islands on the resonant surfaces. The high radial
density of resonant surfaces resulting from the large edge
magnetic shear of X-point plasmas facilitates the overlap of
vacuum islands at the edge, resulting in a stochastic region.
The stochastization of the magnetic field at the edge is often
presented as a possible mechanism of the observed ELM
suppression or mitigation. However, the validity of the vacuum
approach can be questioned. In particular, we address here
the question of the so-called ‘rotational screening’ of the
RMPs, taking parameters which are typical for the DIII-D ELM
control experiments using the I-coils.

The rotational screening of RMPs results from the motion
of the electron fluid across the field lines at the resonant
surfaces [5–7]. Indeed, in the presence of such a motion,
static RMPs in the laboratory frame correspond to time-
varying RMPs in the electron fluid frame, and therefore induce
an electron current opposing their penetration (i.e. hindering
reconnection). The velocity of the electron fluid across the
field lines can be written as V⊥e = VE + V∗e, where VE =
Er/B is the E × B drift velocity and V∗e = p′

e/eneB is
the electron diamagnetic drift velocity (the prime denotes the
radial derivative). The radial electric field Er can itself be
decomposed in the following way (as a consequence of the
radial force balance for the ions): Er = Vθ iBϕ−VϕiBθ −V∗iB,
where Vθ i and Vϕi are the ion fluid poloidal and toroidal
velocities and V∗i = −p′

i/ZieneB is the ion diamagnetic drift
velocity.

Fitzpatrick [8, 9] has developed a theory of the response of
rotating plasma to external RMPs originally in a core plasma
situation, where Er is dominated by the toroidal rotation term
−VϕiBθ and where the diamagnetic effects are small because
|VE| &| V∗e|. In this case, the screening is essentially due
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to the toroidal rotation. The case of interest in this paper is
different. Indeed, in the pedestal of an H-mode plasma, the
composition of Er is more complex and involves an order
zero contribution from the diamagnetic term −V∗iB due to
the strong pressure gradient. Furthermore, VE and V∗e are of
the same order. It is therefore essential, in order to address the
question of rotational screening in the pedestal, to retain the
diamagnetic effects.

Let us now briefly review the previous attempts to model
the plasma response to the I-coils in the DIII-D ELM control
experiments. Bécoulet et al [10] applied the analytical
expression from the Fitzpatrick theory [8, 9] for the screening
factor due to the toroidal rotation, neglecting the diamagnetic
effects. As discussed above, this is valid to leading order in
the core but not in the pedestal. Similarly, non-linear MHD
simulations in realistic geometry such as reported in [11]
using the JOREK code, miss the diamagnetic effects. More
recently, other simulations of this type using the NIMROD
[12] and M3D codes [13], included diamagnetic effects to
some extent without, however, using the correct profiles in the
pedestal. Furthermore, all such realistic geometry simulations
[11–13] need to be run with a resistivity much larger than the
experimental one, for numerical reasons. Since resistivity is
an essential parameter in the screening physics, these codes
cannot model properly the rotational screening. To the best
of our knowledge, the only published work that includes the
diamagnetic effects and uses a realistic resistivity is by Heyn
et al [14]. They employ a linear kinetic model in cylindrical
geometry, taking the profiles for toroidal rotation, electron
density and temperature from a DIII-D discharge from the
ELM control experiments. They find a rather strong screening
of the RMPs at virtually every resonant surface across the
plasma, except at the very edge. Our purpose here is to
address the problem using a fluid model instead of a kinetic one,
while retaining some important quasi-linear effects. We should
mention that Reiser and Chandra [15], as well as Yu et al [5–7],
already applied non-linear fluid models, somewhat similar to
the one we use here, in order to study the question of RMPs
screening by plasma response. However, unlike the above-
mentioned references and this work, their work was done for
TEXTOR parameters instead of DIII-D parameters and for
L-mode rather than H-mode (no pressure pedestal and Er well
were included), which justifies the interest of this paper.

In section 2, we describe our model and discuss its
relevance and limitations. In section 3, we present the results of
a simulation with DIII-D-like parameters, attempting to model
the ELM control experiments using the I-coils. In section 4,
we discuss the results. Finally, we summarize and conclude in
section 5.

2. Model

2.1. Geometry, equations, normalizations

As in [10, 14], we work in cylindrical geometry. We thus lose
realistic geometry, in exchange for which we are able to include
a realistic resistivity. We also neglect toroidal curvature, but it
should be kept in mind that, as shown in [15], curvature effects
play a quantitative role in the screening physics: they tend to
increase the screening efficiency. Since, as shown in section 3,

we find that a strong screening occurs, we may assume that the
inclusion of curvature effects would reinforce our conclusions.
We use the four-field reduced MHD model taken from [16],
assuming cold ions (τ ≡ Ti/Te = 0), neglecting electron
inertia and including diffusive terms that are omitted in [16]:

∂tU + [φ, U ] + ∇‖J = ν⊥'⊥(U − U0), (1)

∂tψ + ∇‖(φ − δp) = η(J − J0), (2)

∂tp + [φ, p] + β∇‖(V + 2δJ ) = χ⊥'⊥(p − p0), (3)

∂tV + 1
2∇‖p + [φ, V ] = ν‖'⊥(V − V0). (4)

Here, U ≡ '⊥φ is the vorticity projected along the
z-axis (which is the equivalent of the toroidal direction in
cylindrical geometry), φ is the electrostatic potential, ν⊥ is
the perpendicular viscosity, ψ is the poloidal magnetic flux,
δ ≡ (c/2ωpi)/a (where c is the speed of light, ωpi ≡
(nee

2/ε0Aimi)
1/2 and a is the minor radius) parametrizes

the finite Larmor radius effects, p is the pressure, η is
the resistivity, J ≡ '⊥ψ is the current density projected
along the z-axis, β ≡ p/(B2

0/2µ0) (B0 being the toroidal
field), χ⊥ is the perpendicular heat diffusivity (the inclusion
of parallel heat diffusion is left for future work), V is the
parallel (to the equilibrium field lines) velocity and ν‖ is
the parallel viscosity. We remark that δ and β are taken as
parameters, calculated from the top of the pedestal density
and pressure, but the model would be more accurate if
they had a profile. The Poisson brackets are defined by
[A, B] = *ez · *∇A × *∇B. The parallel gradient is defined
as ∇‖A = ∂zA+[A,ψ], parallel thus referring here to the total
magnetic field, including perturbations. The perpendicular
Laplace operator is defined, in our cylindrical coordinates
system (r, z, θ), as '⊥A = (1/r)∂r(r∂rA) + (1/r2)∂2

θθA. We
use source terms −ν⊥'⊥U0, −ηJ0, −χ⊥'⊥p0 and −ν‖'⊥V0

to compensate for the diffusion of the equilibrium profiles U0,
J0, p0 and V0. All distances are normalized to the minor
radius a, time is normalized to the Alfvén time τA ≡ a/VA ≡
a/(B0/(µ0ρ0)

1/2), magnetic flux to aB0 and current density to
B0/µ0a. In (1), the viscosity appears in the normalized form
ν⊥ ≡ Re−1 ≡ τA/τV , where Re is the Reynolds number and
τV is the viscous time defined by τV ≡ a2/ν⊥ [m2 s−1], where
ν⊥ [m2 s−1] is the actual viscosity in m2 s−1. Similarly, in (2) the
resistivity appears in the normalized form η ≡ S−1 ≡ τA/τR,
where S is the Lundquist number and τR is the resistive
time defined by τR ≡ µ0a

2/η[0m], where η[0m] is the actual
resistivity in 0m.

We note that the ∇‖(φ− δp) term in equation (2) contains
a (VE + V∗e) · ∂θψ part which is the origin of the screening
currents due to the rotation.

2.2. Numerical implementation

The system (1)–(4) is solved using the 4FC 4-field cylindrical
MHD code. 4FC solves the complete equations of the model
described in [16], but is run here with the τ parameter set
equal to zero to work with cold ions (Ti/Te = 0). Diffusion
terms have been added for the equilibrium drive, as described
above. The equations are discretized along the radial direction
following a finite differences approach based on a user-defined
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Figure 1. Left: input density, electron temperature and normalized resistivity profiles. Right: initial normalized current profile and q profile.

non-uniform mesh (rk)k=1,...,Nr. The two periodical directions
(poloidal and ‘toroidal’) are treated in the Fourier space:

X(r, θ, ζ ) =
∑

m,n∈Emn

X̃mn(r) · exp(i(mθ − nζ )),

where ζ ≡ 2π(z/R0), X is one of the unknown fields and Emn

is a user-defined set of modes to be treated (where m and n
are the poloidal and toroidal mode numbers). For simplicity,
the tildes will be omitted in the rest of the paper. A semi-
implicit method is applied for the time-stepping: while linear
terms (diffusion terms and toroidal gradient terms) are treated
implicitly, the non-linear contribution of the Poisson brackets
operator, which is responsible for the modes interaction, is
treated explicitly.

2.3. Boundary conditions (BCs) and model for the externally
imposed RMPs

For the BCs, we set

– for the (m, n) = (0, 0) ‘equilibrium’ harmonic: U ′
00|r=0 =

U00|r=1 = 0, and similarly for J00, p00, V00, φ00 and ψ00;
– for the (m, n) ,= (0, 0) ‘perturbation’ harmonics:

Umn|r=0 = Umn|r=1 = 0, and similarly for Jmn, pmn,
Vmn, φmn and ψmn|r=0. The only exception is for ψmn

at r = 1. Indeed, the external RMPs are imposed
through the BC: ψ ′

mn|r=1 = m-2ψvac
mn − ψmn|r=1.. This

represents a current distribution in the z-direction with
an (m, n) symmetry, localized on a cylinder of radius
rcoils ! 1 and producing, in vacuum, an (m, n) poloidal
flux ψmn = ψvac

mn at r = 1 (see the demonstration in the
appendix). This is an exact BC if the plasma is surrounded
by a perfect vacuum without any wall. It is more physical
than imposing the value of ψmn at r = 1, in the sense that
it represents the effect of a current distribution (i.e. coils)
instead of that of a prescribed magnetic perturbation at
the boundary. We model the n = 3 perturbations from
the I-coils by imposing, for each resonant harmonic, a
vacuum radial resonant field (normalized to the toroidal
field) giving an RMP field on the resonant surface of
br

mn = 4 × 10−4. The latter value is a typical one for
the DIII-D I-coils, taken from [17]. In terms of our BCs,
this corresponds to ψvac

mn = r−m+1
mn br

mn/m, where rmn is the
radius of the resonant surface. The RMPs are switched on
at the beginning of the simulation over ∼2τA, i.e. we use
ψvac

mn (t) = (r−m+1
mn br

mn/m)(1 − e−t/2τA).

2.4. Limitations of the model

The physics of rotation and radial electric field in the pedestal
of an H-mode plasma [18] involves an interplay between the
neoclassical damping of the poloidal rotation [19], ion orbit
losses [20], turbulence-driven zonal flows [21], etc. It is also
known that a stochastic magnetic field at the edge increases the
radial electric field [22–24]. None of these phenomena, which
are potentially crucial, is modelled in this work. Our model
can therefore not pretend to be complete and our ambition is
limited to showing some of the important mechanisms which
are at play in the physics of the H-mode plasma response to
external RMPs.

2.5. Input parameters and profiles

The parameters are DIII-D-like: minor radius a = 0.6 m,
major radius R0 = 1.70 m, vacuum toroidal field on axis
B0 = 1.95 T. The electron density is considered flat, with
the value ne = 3.5 × 1019 m−3. The electron temperature
profile has a pedestal of ∼500 eV of height and ∼2% of width
in normalized radius. We use a Spitzer–Härm [25] resistivity
profile, calculating η from Te: η[0m] = 2.8 × 10−8/Te [keV]3/2 .
Figure 1 presents the ne, Te and η input profiles. The Alfvén
time with these parameters is τA = 1.2×10−7 s and the Alfvén
velocity VA = 5.0 × 106 m s−1.

We derive the initial vorticity profile U0 from the radial
electric field profile. For the latter, we use an analytical
expression in which we set the parameters in order to
resemble the profile deduced from charge exchange radiation
spectroscopy measurements for C VI ions for DIII-D shot
122481 at ∼1900 ms, which is shown in figure 6(b) of [26].
The initial profiles of the E × B velocity and electron
diamagnetic velocity, together with their sum (i.e. the total
poloidal electron velocity), are shown in figure 2 (left).

The current profile J0 is calculated from a q profile
representative of a typical DIII-D H-mode, with q95 ∼ 3.6.
One drawback of the cylindrical modelling is that an unrealistic
large negative current density at the edge is needed in order to
obtain the large magnetic shear due to the X-point in DIII-D
(Heyn et al met the same difficulty [14]). In other words, a
compromise has to be made between the current profile and the
q profile in a cylindrical modelling: both cannot be reproduced
at the same time. Here, we choose to privilege the q profile.
In order to satisfy the BC J0|r=1 = 0, we cannot, however,
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Figure 2. Initial (left) and final (right) rotation profiles (velocities are normalized to the Alfvén velocity). The vertical lines show the
position of the resonant surfaces (where q = m/3).

reproduce the divergence of q at the separatrix. The current
and q profiles are shown in figure 1 (right).

The other parameters are β = 2.76 × 10−3, ν⊥ = ν‖ =
2 × 10−6 (corresponding to ∼6 m2 s−1) and χ⊥ = 5 × 10−8

(corresponding to ∼0.15 m2 s−1). It can be remarked that the
viscosity is taken larger than the typical anomalous viscosity
(which would be ∼1 m2 s−1). We are, however, constrained to
use such a large value in order to start the simulations with
an intrinsically stable plasma. Indeed, at low viscosity, a
simulation without any external RMPs shows that the (11, 3)
mode is tearing unstable. For the heat diffusivity χ⊥, however,
we are able to use a value which is typical of the neoclassical
transport taking place in the pedestal. Thus, the extra heat
transport induced by the RMPs in the pedestal can directly be
compared with a realistic level of background transport.

We do not impose an experimental parallel rotation profile
and instead we simply use V0 = 0. We indeed believe that
the parallel rotation does not play an important role in the
physics addressed here (in particular, it does not appear in
equation (2), which governs the rotational screening through
the ∇‖(φ − δp) term).

2.6. Numerical parameters

We use a non-equidistant radial mesh with 150 grid points,
∼3/4 of which are located between r = 0.9 and r = 1. The
time step is of 4 × 10−2τA. Only the harmonics (m, n) =
(0, 0), (9, 3), (10, 3), (11, 3) and (12, 3) are considered. The
positions of the resonant surfaces can be seen in figure 2. The
simulations are quasi-linear in the sense that the perturbation
harmonics can, by interacting with themselves, modify the
(0, 0) profiles. The perturbation harmonics interact between
each other only through the (0, 0) mode.

3. Results

The simulation is run for 8 × 103τA, until a steady state is
reached. Figure 3 shows the final profiles of the poloidal flux
for the different perturbation harmonics. The profiles for the
vacuum field are also shown for comparison. It is notable that
for all but the (12, 3) harmonic, ψmn goes almost exactly to
0 at the position of the corresponding resonant surface. This
means that very little reconnection takes place, i.e. there is a
strong screening. Figure 4 (left) shows a Poincaré plot at the

end of the simulation. It can be compared with figure 4 (right),
which presents a Poincaré plot in a simulation with Er and δ
both set to zero, i.e. where there is no rotation (neither E × B

nor diamagnetic [remember that δ quantifies the finite Larmor
radius effects]) and therefore no screening. As can be expected
from the ψmn profiles, the only clearly observable island chain
in figure 4 (left) is the (12, 3) one.

The fact that a partial penetration of the (12, 3) RMPs takes
place may be attributed to the larger resistivity at the q = 12/3
surface, which is at the edge, where the plasma is colder. This
indicates that, in reality, it is likely that there is a thin stochastic
layer at the very edge of the plasma. However, in the present
simulations, we cannot reproduce this effect because we are
unable to reproduce the q profile at the very edge, as discussed
above.

The strong screening for the (9–11, 3) modes is due to
helical currents being induced by the RMPs, which are shown
in figure 5. One can see that these currents have rather
complicated profiles, but are essentially located around their
respective resonant surfaces.

It can be seen by comparing figure 2 left and right that
the V∗e profile is affected by the RMPs around the resonant
surfaces. Figure 6 shows the pressure profile for the (0, 0)
mode at the beginning of the simulation (this profile would
maintain itself without the RMPs) and at the end of it. The
visible difference is a reflection of the effect of the RMPs
on the transport. Calculating the contribution of the different
terms in the pressure equation, we found that the transport
is essentially due to the [φ, p] term (i.e. to convection cells,
which recalls [11, 12]) and to the β∇‖(2δJ ) term. It has
been shown recently by Yu and Günter [5] that the β∇‖(2δJ )

term can produce transport, and thereby affect the diamagnetic
rotation profile, in a similar way as the ∇‖J term in the vorticity
equation is known to affect the E × B rotation profile [8, 9].
It is argued in [5] that which one of the two rotation profiles
(diamagnetic or E×B) is most affected depends on the ratio of
diffusivitiesχ⊥/ν⊥. In our case, ν⊥ & χ⊥ and accordingly the
effect is mainly on the diamagnetic rotation. The fact that the
diamagnetic rotation profile is affected by the RMPs means that
the RMPs induce, at least locally, a transport that is comparable
to the background transport. This mechanism may account for
the density pump-out observed in the experiments [1, 2]. It
should be kept in mind that the parallel heat conduction, which
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Figure 3. Final profile of the poloidal flux for each perturbation harmonic (real and imaginary parts). The position of the resonant surface is
shown by the vertical line. The vacuum field (which only has a real part) is also shown.

Figure 4. Poincaré plot at the end of the simulation. Left: with E × B and diamagnetic rotation. Right: without any rotation.

we have omitted here, may also play an important role in the
transport.

Looking at the input rotation profiles of figure 2 (left)
again, it is interesting to note that there exists a location, close
to the top of the pedestal, where V⊥e = VE + V∗e = 0. If a
resonant surface was located near this point, one could expect
RMP penetration. To verify this, we did a simulation where we
multiplied the equilibrium current profile by a factor 1.03. This
way, the q = 10/3 surface coincided with the surface where
V⊥e = 0, as can be seen in figure 7 (top left). For simplicity,
we simulated only the (0, 0) and (10, 3) modes. The simulation
was run for a duration of 2 × 104τA. It can be seen in figure 7
(top right) that the RMPs indeed penetrate. Figure 7 (bottom
left and right) shows that this is associated with a reduction
in |V∗e| (i.e. the pressure gradient) at q = 10/3, which is
accompanied by a reduction in VE , so that V⊥e remains small.

Although the reduction in |V∗e| is localized, the reduction in VE

is rather global, which can be attributed to the large viscosity
used in the simulation.

The scenario of an island chain penetrating at a surface
located close to the pedestal top is an attractive one to explain
the effect of the I-coils on the profiles, in particular the fact
that the pressure gradient is mainly affected around the top of
the pedestal (see figure 6(g) in [1]). It appears, however, to be
incompatible with the experimentally observed effect of the
I-coils on Er . Indeed, figure 6(b) of [26] clearly shows that
Er increases in the presence of the I-coils, i.e. VE increases,
oppositely to the evolution observed in our simulation. Note,
however, that in the previous simulation (see figure 2) Er is
increased slightly by the RMPs, in qualitative agreement with
the experiment. In any case, the penetration of an island chain
should in principle be testable experimentally, by analysing
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Figure 5. Final profile of the parallel current density for each perturbation harmonic. The position of the resonant surface is shown by the
vertical line.

Figure 6. Pressure profiles for the (m = 0, n = 0) harmonic at the
beginning and at the end of the simulation.

the electron perpendicular velocity V⊥e, or equivalently the
quantity Er +(∂rpe/ene): if this is found to vanish at a resonant
surface, island penetration could be expected, otherwise a
screening should take place.

4. Discussion

The Fitzpatrick theory [8, 9] describes a mechanism for RMP
penetration: they induce a J × B torque (contained in the
∇‖J term in equation (1)) at the resonant surface, in the
opposite direction to the rotation. The torque becomes larger
as the rotation slows down, so that if the RMPs are large
enough compared with the viscosity (that tends to maintain
the rotation), a dramatic braking takes place and the RMPs
penetrate.

Our model contains this physics but in the simulation
presented in this paper, the RMPs are below the penetration
threshold. It can be seen, however, that they modify the
rotation. Here, since two-fluid effects are taken into account,
by ‘rotation’ we mean the total perpendicular velocity of the
electrons V⊥e = VE + V∗e. This can be affected either through
the E×B velocity VE or through the diamagnetic velocity V∗e.
The latter may be influenced in particular by the β∇‖(2δJ )
term in equation (3), as shown in [5]. In figure 2, it appears
that V∗e is the most affected quantity. This may be attributed to
the small ratio χ⊥/ν⊥ [5]. The evolution of VE , which slightly
increases everywhere, is qualitatively (but not quantitatively)
consistent with figure 6(b) of [26]. The resulting effect on V⊥e

is that, at each resonant surface, it evolves towards 0, i.e. the
RMPs do brake the electron perpendicular rotation (as found
in [5–7]), but not enough to penetrate.

We should remark, however, that given the limitations of
our simulations, the RMPs penetration threshold may not be
represented correctly. In particular, the unrealistically large
viscosity that we had to use in order to avoid the intrinsically
unstable mode makes the rotation profile more resilient to
changes than it should be, and thereby increases the RMPs
amplitude needed for penetration. Also, the fact that we
use an unrealistic geometry and current profile and, again,
an unrealistically large viscosity, must have an impact on the
resonant field amplification of the RMPs by the plasma (which
plays a role in their penetration [27]). In any case, from
the experimental point of view, the RMPs penetration should
correspond to V⊥e (or equivalently Er + (∂rpe/ene)) going to
0 at the resonant surfaces. It should thus be possible to tell
from experimental measurements whether or not the RMPs
penetrate.
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Figure 7. Profiles in the simulation where the current profile was multiplied by 1.03. Top left: input rotation profiles and position of the
q = 10/3 surface. Top right: final (10, 3) poloidal flux. Bottom left: final rotation profiles. Bottom right: time evolution of the rotation at the
q = 10/3 surface.

5. Conclusion

The modelling presented in this paper, although highly
simplified, retains the main components of the physics of
rotational screening of RMPs in the pedestal of an H-mode
plasma. Our results indicate that a strong screening takes
place over most of the pedestal in the DIII-D ELM control
experiments using the I-coils. Only at the very edge (over ∼1%
of the normalized radius) is it likely that RMPs penetration
takes place and results in a stochastic layer, consistently
with the results of Heyn et al [14]. Our results put in
question the often proposed picture according to which ELM
suppression is due to the stochastization of the magnetic field
over a region much broader than the pedestal [2]. On the
other hand, the screening is consistent with the fact that the
electron temperature gradient is not affected by the I-coils
experimentally [1]. A transport mechanism due to the RMPs,
related to convective cells as well as the screening currents
themselves, is found. It appears to be of the same order as
the background transport in the pedestal and is therefore a
candidate for the experimental density pump-out and changes
in the pressure gradient profile. The possibility that an island
chain could penetrate on a surface located close to the top
of the pedestal is envisaged, but seems inconsistent with
experimental observations. Finally, we stress that in our
simulations the RMPs are below the penetration threshold, but
the model is not solid enough to ascertain this conclusion. We,
however, suggest that a careful analysis of the experimental
profile of Er +(∂rpe/ene) should give an answer to the question
of whether mode penetration occurs or not.
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Appendix. BC to represent external RMPs

In this appendix, we derive a proper BC to represent RMPs
driven by external currents in cylindrical geometry. We assume
that the plasma is surrounded by an infinite vacuum with
only an infinitesimally thin layer of axial current at a certain
radius rc, with an (m, n) symmetry: J (r, z, θ) = Imn/2πrc ·
δ(r − rc) · exp(imθ − in(z/R0)), where δ denotes the Dirac
function.

BC at the coils radius. As a first step, let us assume that we
want to know the BC at the radius rc. We will generalize below
to any radius between the plasma and the coils. Integrating
Ampère’s law across a cylindrical layer around rc and taking
the limit where the layer is infinitesimally thin, we have
[[ψ ′

mn]]rc = −µ0Imn/2π · rc (1), where [[ ]]rc denotes the jump
across rc and the prime corresponds to the radial derivative.
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It is easy to show (again by applying Ampère’s law, which
gives '⊥ψ = 0 in vacuum) that for r > rc, ψmn has an
r−m dependence, provided m ,= 0. Therefore, ψ ′

mn(rc+) =
−(m/rc)ψmn(rc), where the LHS designates the limit value as
r approaches rc from +∞. In the RHS, the continuity of ψmn

(which stems from the continuity of the radial magnetic field
across the current layer), allows us to write rc rather than rc+.
In a similar way, if there was no plasma,ψmn (which we denote
ψvac

mn in that case) should have an rm dependence for r < rc, and
we would then have [[ψvac ′

mn ]]rc = −(2m/rc)ψ
vac
mn (rc). Thus,

Imn = 4π · m ·ψvac
mn (rc)/rc. The correct BC at r = rc can then

be written

ψ ′
mn(rc−) = m · (2ψvac

mn (rc) − ψmn(rc))

rc
.

It is interesting to note that this BC involves both ψmn

and ψ ′
mn, i.e. it is a mixture of Neumann and Dirichlet

conditions.

BC at any radius between the plasma and the coils. Let us
now study the more general case where we want a BC at a
given radius rs between the plasma and the coils (in the case
of this paper, this radius is actually the plasma radius). For
r ! rs, ψmn is entirely determined by Ampère’s law and
the following two BCs: ψmn(rs) = ψ s

mn, where ψ s
mn is not

known a priori, andψ ′
mn(rc−) = m · (2ψvac

mn (rc)−ψmn(rc))/rc,
the relation which we derived above. Since Ampère’s law is
linear, we can decompose the problem of finding ψmn into
two separate problems for two functions ψ1

mn and ψ2
mn. We

require that these functions satisfy Ampère’s law and the BCs:
ψ1

mn(rs) = ψ s
mn, ψ1 ′

mn(rc−) = −m · ψ1
mn(rc)/rc, ψ2

mn(rs) = 0
and ψ2 ′

mn(rc−) = −((m · (2ψvac
mn (rc) − ψ2

mn(rc)))/rc), ψmn is
then simply obtained by adding ψ1

mn and ψ2
mn. Now, a few

lines of algebra show that ψ1
mn(r) = ψ s

mn · (r/rs)
−m and

ψ2
mn(r) = ψvac

mn (rc) · [(r/rs)
m − (r/rs)

−m]. Summing the two

and taking the radial derivative at r = rs, we finally obtain the
proper BC:

ψ ′
mn(rs−) = m · (2ψvac

mn (rc) · (rs/rc)
m − ψmn(rs))

rs
.

Euratom/UKAEA © 2010.
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